The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system
نویسندگان
چکیده
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.
منابع مشابه
Comparison of Copper Dissolution in Chalcopyrite Concentrate Bioleaching with Acidianus Brierleyi in Different Initial pH Values
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate by the thermophilic Acidianus brierleyi was studied, and the microbial grow...
متن کاملComparison of chalcopyrite bioleaching after different microbial enrichment in shake flasks.
The bioleachings of chalcopyrite ore were compared after inoculating different cultures enriched from the original acid mine drainage sample. The results showed that the higher bioleaching performance was achieved for inoculation with the enrichment D (0.5 % S, 2 % iron and 1 % chalcopyrite) compared to other enrichment systems. The generated ferric precipitation during bioleaching had a key in...
متن کاملBioleaching genomics
Mineral ores are full of metals, some very precious – but how to extract them? The Hamersley mines in the Pilbara in Western Australia contain such rich iron ore that it can almost be welded as it comes out of the ground. Traditionally, metals are extracted by ‘smelting’ or pyrometallurgy, the thermal treatment of minerals and metallurgical ores and concentrates to bring about physical and chem...
متن کاملFacilitate of Gold Extracting From Mouteh Refractory Gold Ore Using Indigenouse Bacteria
The term biomining have been coined to refer to the use of microorganisms in mining processes as in the biooxidation of refractory gold minerals. The biooxidation of refractory gold ores presents similar characteristics when compared with roasting and pressure oxidation. Almost without exception, microbial extraction procedures are more environmentally friendly. The isolated bacteria in this st...
متن کاملFacilitate of Gold Extracting From Mouteh Refractory Gold Ore Using Indigenouse Bacteria
The term biomining have been coined to refer to the use of microorganisms in mining processes as in the biooxidation of refractory gold minerals. The biooxidation of refractory gold ores presents similar characteristics when compared with roasting and pressure oxidation. Almost without exception, microbial extraction procedures are more environmentally friendly. The isolated bacteria in this st...
متن کامل